
Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

THE JAMOMA AUDIO GRAPH LAYER

Timothy Place

74 Objects LLC,
Kansas City, Missouri, USA
tim@74objects.com

Trond Lossius

BEK - Bergen Center for Electronic Arts
Bergen, Norway

trond.lossius@bek.no

Nils Peters

McGill University, CIRMMT
Montreal, Quebec, Canada

nils.peters@mcgill.ca

ABSTRACT

Jamoma Audio Graph is a framework for creating graph struc-
tures in which unit generators are connected together to process
dynamic multi-channel audio in real-time. These graph structures
are particularly well-suited to spatial audio contexts demanding
large numbers of audio channels, such as Higher Order Ambison-
ics, Wave Field Synthesis and microphone arrays for beamform-
ing. This framework forms part of the Jamoma layered architec-
ture for interactive systems, with current implementations of Ja-
moma Audio Graph targeting the Max/MSP, PureData, Ruby, and
AudioUnit environments.

1. INTRODUCTION

Many frameworks, toolkits, and environments for real-time au-
dio fuse the issues of creating unit generators with creating graph
structures1 that process audio through those unit generators. Al-
ternatively, the Jamoma Platform implements a clear separation
of concerns, structured in a layered architecture of several frame-
works [1]. Six frameworks currently comprise the Jamoma Plat-
form, providing a comprehensive infrastructure for creating com-
puter music systems. These frameworks are: Jamoma Founda-
tion, Jamoma Graphics, Jamoma Modular, Jamoma DSP, Jamoma
Graph and Jamoma Audio Graph (see Figure 1).

Jamoma Foundation provides low-level support, base classes,
and communication systems; Jamoma Graphics provides screen
graphics; Jamoma Modular provides a structured approach to de-
velopment and control of modules in the graphical media envi-
ronment Max [2] and Jamoma DSP specializes the Foundation
classes to provide a framework for creating a library of unit gener-
ators. Jamoma Graph networks Jamoma Foundation based objects
into graph structures, providing a basic asynchronous processing
model for objects (nodes) in the graph structure. Jamoma Audio
Graph, the focus of this paper, is an open source C++ framework
that extends and specializes the Jamoma Graph layer. It provides
the ability to create and network Jamoma DSP objects into dy-
namic graph structures for synchronous audio processing2.

1.1. Requirements

Through years of accumulated collective experience in a myriad of
contexts for realtime multi-channel audio work, we found a num-
ber of practical needs were still unmet by readily available environ-
ments. We believe the following necessities are required not only

1Wikipedia defines this by saying “a graph is an abstract representation
of a set of objects where some pairs of the objects are connected by links”.
http://en.wikipedia.org/wiki/Graph_(mathematics)

2Licensing for all layers of the Jamoma Platform are provided under
the terms of the GNU LGPL

Jamoma
Modular

Max/MSP
Environment

Ruby
Environment

Jamoma Foundation

AudioUnit
Plug-in Hosts

Pure Data
Environment

System Layer
(Mac OS, Windows, PortAudio, Cairo, etc.)

...

Jamoma Audio Graph
 Jamoma

 DSP
Jamoma
Graphics

Jamoma Graph

Figure 1: The Jamoma Platform as Layered Architecture.

to ease usability concerns in some environments, but also to open
new avenues of creation, exchange, performance, and research in
digital audio effects.

• Connections between objects must be capable of delivering
multiple channels of audio

• Support for audio signals with multiple sample rates and
vector sizes simultaneously within a graph

• Audio signal sample rate, vector size, and number of chan-
nels must be dynamic (able to be changed in realtime)

• Dynamic modification of an audio graph at runtime (Live
coding/Live patching)

• Ability to transport representations of an audio graph be-
tween different programming languages

• Support for multi-threaded parallel audio processing
• Liberal licensing for both open source and commercial use
• Cross-platform

In order to best meet these requirements, Jamoma Audio Graph
relies on a pull pattern (see Section 2.3) and is designed to be in-
dependent from the host environment’s DSP scheduler. An addi-
tional design decision is the use of a “peer object model" which
abstracts the implementation and execution of the graph from any
particular environment or platform. This allows for the Jamoma
Audio Graph layer to be readily implemented for any number of
environments. To date the authors have created implementations
for Max, PureData, Audio Units, and Ruby.

2. BACKGROUND

2.1. Decoupling Graph and Unit Generator

The Jamoma DSP framework for creating unit generators does not
define the way in which one must produce signal processing to-

DAFX-1

http://74objects.com
mailto:tim@74objects.com
http://www.bek.no/
mailto:trond.lossius@bek.no
http://www.music.mcgill.ca/musictech/
mailto:nils.peters@mcgill.ca
http://en.wikipedia.org/wiki/Graph_(mathematics)

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

pographies. Instead, the process of creating objects and connecting
them are envisioned and implemented orthogonally. The graph is
created using a separate framework: Jamoma Audio Graph. Due to
this decoupling of Jamoma DSP and Jamoma Audio Graph we are
able to create and use Jamoma DSP unit generators with a number
of different graph structures. Jamoma Audio Graph is one graph
structure that a developer may choose to employ.

Common real-time audio processing environments includ-
ing Max/MSP, Pd, SuperCollider, Csound, Bidule, AudioMulch,
Reaktor and Reason all have unit generators, but the unit genera-
tors can only be used within the particular environment. The unit
generators have a proprietary format and thus no interchangeabil-
ity. Likewise, the graph structure is proprietary. While SDKs are
available for some of these environments, for others no SDK exists
and the systems are closed. Ability to host Audio Units and VST
may extend these environments, but with limitations.

2.2. Audio Graph Structures

A graph structure is an abstract structure where paths are created
between nodes (objects) in a set. The paths between these nodes
then define the data-flow of the graph. Graph structures for audio
signal processing employ several patterns and idioms to achieve a
balance of efficiency, flexibility, and real-time capability.

Environments for real-time processing typically need to ad-
dress concerns in both synchronous and asynchronous contexts.
Asynchronous communication is required for handling MIDI,
mouse-clicks and other user interactions, the receipt of Open
Sound Control messages from a network, and often for driving
attributes from audio sequencer automations. Conversely, realtime
processing of audio streams must be handled synchronously. Most
environments, such as CLAM [3], deal with these two types of
graphs as separate from each other. In the Jamoma Platform this
is also the case, where Jamoma Audio Graph comprises the syn-
chronous audio graph concerns, and Jamoma Graph implements
asynchronous message passing.

To reduce the computational overhead of making synchronous
calls through the graph for every sample, most systems employ
the notion of frame processing. The TTAudioSignal class in
Jamoma DSP represents audio signals as a collection of audio sam-
ple vectors and metadata, containing one vector per audio channel.
Jamoma Audio Graph uses the TTAudioSignal class to pro-
cesses these vectors of samples at once rather than a single sample
at a time.

2.3. Push vs. Pull

When visualizing a signal processing graph, it is common to rep-
resent the flow of audio from top-to-bottom or left-to-right. Under
the hood, the processing may be implemented in this top-to-bottom
flow as well. Audio at the top of the graph ‘pushes’ down through
each subsequent object in the chain until it reaches the bottom.

Alternatively, audio processing may be driven from the bottom
of the chain from a ‘terminal object’ or ‘sink’. This strategy for
processing an audio graph, the ‘pull’ method, is used by several en-
vironments including Apple’s AUGraph and ChucK [4]. AUGraph
and ChucK are subject to certain limitations however: AUGraph
does not permit “fanning” connections (many inlets connected to
one outlet)3 while ChucK is not multi-threaded.

3http://developer.apple.com/mac/library/documentation/General/
Conceptual/SLGlobalGlossary/Glossary/Glossary.html

2.4. Multi-channel Processing

In many real-time audio patching environments, such as
Max/MSP, Pd, Bidule or AudioMulch, audio objects are connected
using mono signals. For multi-channel spatial processing the patch
has to be tailored to the number of sources and speakers. If such
programs are considered programming environments and the patch
the program, a change in the number of sources or speakers re-
quires a rewrite of the program, not just a change to one or more
configuration parameters.

2.4.1. CSound

In Csound multi-channel audio graph possibilities are extended
somewhat through the introduction of the “chn” set of opcodes.
The “chn” opcodes provide access to a global string-indexed soft-
ware bus enabling communicating between a host application and
the Csound engine, but can also be used for dynamic routing
within Csound itself [5]. Below is an example of a simple multi-
channel filter implementation using named software busses to iter-
ate through the channels:

multi-channel filter, event handler
instr 2
iNumC = p4 ; number of channels
iCF = p5 ; filter cutoff
ichnNum = 0 ; init the channel number

makeEvent:
ichnNum = ichnNum + 1
event_i "i", 3, 0, p3, ichnNum, iCF
if ichnNum < iNumC igoto makeEvent
endin

multi-channel filter, audio processing
instr 3
instance = p4
iCF = p5
Sname sprintf "Signal_%i", instance
a1 chnget Sname
a1 butterlp a1, iCF

chnset a1, Sname
endin

2.4.2. SuperCollider

SuperCollider employs an elegant solution by representing signals
containing multiple channels of audio as arrays. When an array
of audio signals is given as input to a unit generator it causes
multi-channel expansion: multiple copies of the unit generator are
spawned to create an array of unit generators, each processing a
different signal from the array of inputs. In the following example
a stereo signal containing white and pink noise is filtered:

{
\\ Create stereo signal as array:
p = [WhiteNoise.ar, PinkNoise.ar];

\\ Biquad filter applied to array of channels:
SOS.ar(p, 1, -1.992, 0.986, 1.992, -0.993, 0.1);

}.play

DAFX-2

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

3. DESIGN AND IMPLEMENTATION

3.1. Structure

Jamoma Audio Graph is a framework4 implementing a syn-
chronous multi-channel audio processing graph driven using
a pull methodology. This is accomplished through the cre-
ation of a node class for the graph, TTAudioGraphObject,
which wraps a unit generator with other supporting objects.
TTAudioGraphObject then manages these instances and the
information necessary to pull samples from its sources.

Figure 2 shows these classes and their relations. Here, an ob-
ject is connected to three upstream objects, and to two downstream
objects, with all connections being multi-channel. In database par-
lance, a connection between objects can be considered as a many-
to-many association; each outlet can be connected to many inlets,
and each inlet can be connected to many outlets. The source ob-
jects represented by s0, s1, etc. can then be considered as join
tables representing each connection in the many-to-many relation-
ship individually.

Unit Generator

out0 out1 out0 out1 out0

s0

in2

s0

in2

s0

in2

s0

in2

s1

in0

s0 s1

in1

s0

in2
s0 s1 s2

in3

s0

out0 out1 out2 out3

Figure 2: TTAudioGraphObject Class Anatomy

The architecture of TTAudioGraphObject is layered: the au-
dio graph object itself only knows about its inlets; the inlets only
know about their sources (the so-called ‘joins’ in database termi-
nology); the sources know from what object and from which outlet
they are connected. In the figure this is illustrated by the object
having four inlets. Two multi-channel sources s0 and s1 are con-
nected to the first inlet in0, two to the second, and so on. In short:

A graph has many objects.
An object has many inlets.
An inlet has many sources.
A source has many channels.

3.2. Building the Graph

For processing to occur, the connections of the graph must be es-
tablished. This is accomplished by passing a reference to a source
object, as well as the outlet and inlet numbers for the connection,

4We use the term framework in a generic sense, as a dynamically linked
library together with supporting source and an API.

to the downstream object’s connect() method. Similarly, con-
nections may be cut by passing the same information to the down-
stream object’s drop() method. Connections may be created or
dropped at any time before, after or during the graph being pro-
cessed. That is to say that there is no global signal chain compi-
lation; the graph may dynamically change over the course of its
operation and performance.

3.3. Processing the Graph

All processing is driven by the object at the end of the processing
chain according to a two step process. First, a ‘preprocess’ method
is propagated up the chain from the terminal object. This zeroes
buffers and sets flags that indicate each object’s processing state.
It is of no consequence if an object receives multiple preprocess
calls, such as would happen if there are multiple terminal nodes.

Since Jamoma Audio Graph is using a pull-based architecture,
an object’s outlets are passive. They are simply buffers storing the
output calculated by the wrapped unit generator. The unit gen-
erator is simply an instance of a Jamoma DSP class, specified as
an argument when the TTAudioGraphObject is instantiated.
This unit generator is responsible for actually calculating the au-
dio to be stored by the outlet buffers.

Unlike the outlets, the inlets are active. When asked for a vec-
tor of audio by the unit generator, the inlets each request audio
from each of their sources (other objects’ outlets). If an inlet has
multiple sources, those sources are summed. When all of the inlets
have performed this operation, then the unit generator proceeds to
process the audio buffered in the inlets and fills the buffers in the
outlets. Sources manage a one-to-one connection between an inlet
and an outlet; inlets may have zero or more sources. To summa-
rize:

With the objects in the graph prepared by the
preprocess() call, the audio can be pulled from the
graph by a terminal object using the process() call on each of
its sources.

3.4. Graph Description

Given an audio graph, the topology can be traversed for pur-
poses other than directly calculating audio. Any node in an au-
dio graph can be queried to create a description. The returned
TTAudioGraphDescription object will then provide meta-
data about the entire graph as seen through that object’s inlets.
There are many applications of this description, including visual
representation of the graph, statistical analysis, and cross-coding.

4. APPLICATION

4.1. Max/MSP

A number of externals for multi-channel audio processing in Max
have been developed combining Jamoma’s Audio Graph and DSP
frameworks. The Max implementation of the Jamoma Audio
Graph layer represents multi-channel signals as ordinary patch
chords. Interfacing between MSP and a Jamoma Audio Graph is
facilitated by the externals jcom.pack≈ and jcom.unpack≈, pack-
ing and unpacking multiple mono MSP signals into and out of
a Jamoma Audio Graph multi-channel signal. jcom.adc≈ and
jcom.dac≈ offer additional possibilities for direct audio input and
output using PortAudio [6] and thus bypassing MSP altogether.
Two or more multi-channel signals might be intertwined into one

DAFX-3

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

(a) Without Audio Graph, using MSP audio signals for 3 inputs and 16 loudspeakers (b) With Audio Graph

Figure 3: The Jamoma signal processing Max patch for Distance Based Amplitude Panning (DBAP)

joint multi-channel signal and separated again using jcom.join≈
and jcom.split≈. The sample rate and vector size used for audio
graph processing, as well as the number of channels in a multi-
channel signal, can be inspected using jcom.info≈.

A number of multi-channel audio generators and processors
comprising common signal processing tasks are available. This
set of generators can be readily extended. For example, the various
units available in the Jamoma DSP libraries can be easily wrapped
into Audio Graph externals for Max using a single line of C++
code.

Spectral processing for multi-channel signals is implemented
through the jcom.fft≈ and jcom.window≈ objects. Several
objects are available for level control and mixing, such as
jcom.gain≈ for controlling gain levels of multi-channel signals,
while jcom.matrix≈ allows M × N matrix-based mixing of the
M channels of the incoming signal onto the N channels of the
resulting signal. This can be used for various amplitude-based
spatialization algorithms such as VBAP [7], DBAP [8] and am-
bisonics [9]. Finally jcom.matrixmixer≈ offers the possibility of
mixing M incoming multi-channel signals onto N returned multi-
channel signals. This combined mixer/router is still rudimentary,
and assumes all incoming and returned signal to have the same
number of channels.

Figure 3 illustrates the use of Jamoma Audio Graph objects in
a patch providing spatialization of 3 mono sources to 16 speakers,
with additional post-spatialization mastering of the signals using a
limiter and gain adjustment. The use of Jamoma Audio Graph ob-
jects greatly helps simplifying the patch as compared to a standard
MSP audio graph.

4.1.1. Jamoma Modular

A strong component of the Jamoma Modular framework is the
provision of ready-to-use building blocks for sound spatialization
[10].

In the past Jamoma used a simple patching hack that wrapped
multiple MSP signals into a multi-channel cable. Within each
module, this multi-channel connection was then unwrapped in or-
der that audio signals could be processed. One of several disad-
vantages of this solution was that whenever the number of sources
or speakers was changed, MSP objects and connections had to be

destroyed and created. Jamoma modules for spatialization require
flexibility to enable users to define the number of incoming sounds
(to be spatialized) and the number of outgoing audio feeds (number
of loudspeakers), thus further requiring that creation and deletion
of MSP objects and connections be done using patcher scripting.
This creates stress on Max in time critical situations, and is not
sufficiently reliable for real-world performance situations. Fur-
thermore, a change in the DSP structure also requires a rebuild
of the DSP chain.

The previous scripting and patching hack approach is currently
being replaced by Jamoma Audio Graph objects to simplify the
spatialization modules and make them more robust. Figure 3b in-
dicates how the number of sources and speakers can be changed
simply by updating attribute values for a few Jamoma Audio Graph
objects, thus eliminating the need for patcher scripting in Jamoma
Modules. Because the Audio Graph signal network can be dynam-
ically reconfigured without the need to recompile the DSP signal
chain, on-the-fly changes are possible while audio is running. In
other words, a change to the number of channels requires only a
change of parameters rather than change to the program itself.

4.2. PureData (Pd)

The Jamoma Audio Graph layer is also implemented for Pure
Data, which is essentially similar to Jamoma Audio Graph for
Max/MSP. The most obvious difference between Jamoma Audio
Graph for Pure Data and Jamoma Audio Graph for Max may be
the slightly different naming convention, the Pure Data version us-
ing ‘=’ instead of ‘≈’ appended as an indicator for multi-channel
signal streams. Figure 4 demonstrates the use of Jamoma Audio
Graph in Pd for passing 4 channels through a chain for processing,
taking advantage of the multi-channel patch cord connections.

4.3. Ruby

Jamoma Audio Graph is ideally suited for use in many different
environments. This includes not only graphical environments, but
textual environments as well. The authors have created an imple-
mentation of Jamoma Audio Graph for the Ruby language envi-
ronment. Ruby offers a wealth of application areas include web
development using Ruby On Rails [11] and Live Coding [12] us-
ing irb. The following listing demonstrates a simple irb session:

DAFX-4

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

Figure 4: Pd patch, processing 4 channels with Jamoma Audio
Graph

require ’TTRuby’
dac = TTAudio.new "dac"
osc = TTAudio.new "wavetable"
dac.connect_audio osc
dac.send "start"
osc.set "frequency", 220.0

By using Jamoma Audio Graph in the Ruby environment for live
coding, users are able to access all of the benefits of using a popu-
lar, general purpose language (Ruby) while at the same time gain-
ing access to many of the benefits of a domain specific language
for musical performance (Jamoma DSP).

All features of Jamoma Audio Graph can be accessed in real
time through a web browser using Ruby on Rails. Through the
use of AJAX, interactive widgets can populate a dynamic interface
in a web-browser for real time control of parameters, as in the
screenshot below.

Figure 5: Jamoma Audio Graph graph operating in a Ruby on
Rails application through a web browser

4.4. Cross-Coding

Using the capabilities of a graph to produce a description of itself,
we are able to port code across environments in a variety of for-
mats. For example, we have implemented functions that export a
graph created in Max to a Ruby source file. Likewise we can ex-
port from a Ruby source file to Pd and from a Pd canvas to C++
code.

The ability to export code/patcher/canvas/document from any
supported environment to any other supported environment offers
great flexibility, not only for code generation and prototyping, but
for freedom in sharing work across platforms and with colleagues.
The currently supported export formats are: Max 5 patcher, C++
source code, Ruby source code and Pure Data.

The additional ability to compile code and export a ready-to-
use AudioUnit or VST plug-ins from any of these environments is
currently in active development.

5. DISCUSSION AND FUTURE WORK

5.1. In Practice

Audio processing is demanding on several levels. Computational
efficiency and performance concerns are just a few of the aspects
related to the real-world use and development of any audio graph
framework. The Jamoma Audio Graph framework seeks to strike a
balance between raw number-crunching, coding and maintaining
code, as well as the flexibility and usability of features for end-
users in various environments.

5.1.1. Code design

The Jamoma frameworks align with contemporary philosophies
for good coding practice, thus facilitating the readability, debug-
ging, maintenance and distribution of code. The frameworks em-
phasize expressive syntax, idioms, and conventions [13] and ad-
here to the DRY (Don’t Repeat Yourself) principle, which states
that “Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system” [14]. Unit testing
is so far implemented only in some of the frameworks, mainly for
methods processed asynchronously. A general system for develop-
ing methods for testing audio signal processes and graphs remains
to be developed, but is likely to be much simpler to achieve us-
ing the text-based Jamoma Audio Graph implementation for Ruby
than it would be within the graphical patching environments Max
or Pd.

The emphasis on code design is a long term investment in the
creation of frameworks intuitive to use, easy to maintain, well-
documented, stable, and supporting an extendable code base, thus
fostering a pleasant working environment. We do this to encourage
others to make use of the frameworks and join in contributing to
future development.

5.1.2. Audio graph patching

The initial motivation for development of Jamoma Audio Graph
was simplification of work on spatialization patches in Jamoma
Modular. The use of multi-channel signals greatly reduces tedious
and repetitious patching where the same chain of audio processes
need to be created over and over again for each channel. More
importantly, it greatly improves the workflow in terms of flexibility
and inter-operability.

DAFX-5

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

Jamoma modules for spatialization share a common interface.
The number of sources and speakers are dynamically reconfigured
on-the-fly using simple configuration scripts describing the num-
ber and positions of sources and speakers. The usefulness of this
can be illustrated by the practical experience of one of the au-
thors while working on a sound installation in Oslo in 2002 as
reported in [15]: For the final week preceding the opening, two of
the composers moved several times a day between working at the
24 speaker setup of the installation site, a 16 speaker setup at a stu-
dio and off-site development using stereo headphones [16]. Each
time a composer moved between environments the various parts of
the patch dealing with spatialization had to be substituted. Using
Jamoma Modular it would instead be possible to trigger simple cue
scripts to reconfigure the system from one setup to another.

Within Jamoma Modular, Jamoma Audio Graph is eventually
planned to be used for all audio modules. One of the major benefits
will be the ability to easily reconfigure each module for work on
mono, stereo, 5.1 or other surround sound signals. Thus we can
avoid creating and maintaining several versions of modules for the
same audio process, in accordance with the DRY principle. For
modules that also depend on the use of ordinary MSP externals
internally, we can use jcom.pack≈ and jcom.pack≈ in combination
with Max scripting.

5.2. Computational performance

Initial development of Jamoma Audio Graph has focused on the
design of an architecturally sound system. As the project emerges
from the early stages of development, minimal time has yet to be
devoted directly to issues of optimization, though such issues have
informed the architecture itself.

Measurement of computational/processor load can be rudi-
mentarily profiled using the facilities of the host environment (e.g.
the CPU readout in Max’s DSP Status window), or via alternative
methods built into special Jamoma Audio Graph classes. In cases
where the audio processing occurs independently of the host envi-
ronment, such as in Max using the jcom.dac≈ object, the host
environment will not be able to adequately measure the computa-
tional load of a Jamoma Audio Graph in the same way as would
apply to audio processing using FTM and Gabor [17].

Computational performance, however, is not merely a matter
of efficient number crunching in the processes, but also efficient
and dynamic management of processes. In live performance sit-
uations, such as concerts, works for stage and installations, the
active processes often change dynamically over the duration of a
work. The ability for dynamic patching without interrupting audio
delivery promises that processes are seamlessly loaded, unloaded,
connected and disconnected on the fly. This further enables the
balancing of processing resources because all employed processes
need not be present for the entire duration of a work. It additionally
opens possibilities for dynamic reconfiguration of the sequence of
processes in Max without requiring the signals to pass through the
send~ and receive~ MSP combo, thus avoiding the introduction of
a potentially undesirable vector-length of delay.

Dynamic patching furthermore enables dynamic loading of
polyphonic voices as needed. While the maximum number of
voices has to be predefined in Max/MSP using poly~, Csound in-
stead dynamically creates as many instances of an instrument as
required by the score at any one time. Jamoma Audio Graph of-
fers similar possibilities in Max and Pd for polyphonic synthesis.
Polyphonic voices might be represented as dynamically changing

channels in a portion of the graph, and mixed at the end using a
matrix≈.

5.2.1. Multithreading

Parallel CPU architectures are becoming increasingly common in
desktop computing platforms. UC Berkeley’s Parallel Comput-
ing Laboratory identified audio applications as one of the most
promising but also most challenging use cases for parallel com-
puting [18]. In addition to prevention of race conditions and dead-
locks, multi-channel real-time audio computing also requires low
latency and jitter-free audio processing execution.

Jamoma Audio Graph supports operation in multi-threaded
environments by running multiple parallel graphs on separate
threads. Current research is focused on the expansion of
multi-threaded support to include intelligent and adaptive multi-
threading within a single graph structure.

The implemented pulling strategy (Section 2.3) offers oppor-
tunities to analyze and benchmark an audio graph structure’s com-
putational performance in real-time. Involved audio processes can
then be distributed and managed amongst different threads or pro-
cessors, particularly where bifurcations of the graph are present,
based on a heuristic determination of how to best balance resources
against computational load. The Dynamic Component Cluster
Rendering, as found in TANGA [19], presents a promising thread-
management strategy for Jamoma Audio Graph.

5.3. Flexible audio graph management

5.3.1. Multiple Simultaneous Graphs

By it’s nature, an audio graph is defined as all objects connected to-
gether into a graph structure terminating at a sink object that drives
the graph. There is no limitation on how many of these graphs may
exist independently, and simultaneously, in any environment. As
these graphs are fully-independent of each other they may run at
different rates, in different threads, and addressing different hard-
ware. The independent graphs may even run side-by-side with one
running in real-time while another is operating out of real time.

5.3.2. Dynamic vector size

A variety of audio processing algorithms require dynamic change
of vector size, dynamic variations in onset position of the vectors,
overlapping vectors or varying sampling rate for all or some parts
of the audio graph. Examples include the Fast Fourier Transform
at various vector sizes and with varying amount of overlap, up-
sampled FFT for improved frequency resolution at low frequencies
and granulation with sample accurate grain onset and duration. In
particular the Gabor library for Max/MSP offers several interest-
ing audio signal processing methods that can only be achieved by
introducing a signal processing paradigm based on the general idea
of streams of atomic sound entities processed with arbitrary tim-
ing or arbitrary processing rates. Gabor achieves this by schedul-
ing vectors within the Max event (or message) processing model
rather than the block-wise signal stream processing engine of MSP.
Sound particles are processed at arbitrary rates or moments and
thus can be adjusted to the frequency, texture or rhythm of a sound
or to the required processing rate of a particular algorithm [17].

Support for this kind of dynamic reconfiguration of vector
sizes, sampling rate and vector onsets remains to be implemented.
A future implementation is envisaged to rely on a pair of objects

DAFX-6

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

bridging between the regular part of the graph and a subsection
with a higher degree of flexibility. Depending on the audio pro-
cessing algorithm at hand, the bridging objects might be required
to communicate back and forth to ensure that the incoming bridge
is looking and buffering sufficiently far ahead in the incoming sig-
nal so that it is able to provide the vectors requested from the
pulling bridge object at the end of the chain. If the stream of vec-
tors or grains depends on analysis of the incoming signal, as is
the case for PSOLA (Pitch Synchronous Overlap-add), the inter-
nal communication between the two bridging objects might also
be used to control the pull mechanism based on the results of the
analysis of incoming audio.

5.3.3. Implicit Patching

Currently all connections in an audio graph are managed manu-
ally. In a graphical environment such as Max we could say that
the connections between objects are explicitly patched together by
the user. A higher-level alternative to this “explicit patching” by
the user is the “implicit patching” paradigm embraced by Marsyas
[20].

Through the use of implicit patching the user is able to interact
with groups of objects that are networked together by specifying a
pattern to use, rather than directly and manually making each con-
nection. One elementary example is the creation of a multi-band
EQ, by creating an array of bandpass filters and then specifying
them to connect as a parallel group. A group patched according
to a ‘series’ pattern would connect one after the other to apply a
transformation throughout the chain of objects in the group.

5.4. Improving support for work on spatial audio

The advantages of multi-channel audio patches in common com-
puter music environments can be clearly seen in Figure 3. The
ability to work individually on a single audio channels within the
audio graph is currently limited. For instance, it is possible to ap-
ply jcom.filter≈ to manipulate all audio channels within a graph
connection in the same way. However, many multi-channel audio
applications (such as the Near Field Compensation in Higher Or-
der Ambisonics) rely on filtering processes individualized across
audio channels. Future work will address this issue. Jamoma Au-
dio Graph can be further extended to support upmix/downmix al-
gorithms that seamlessly mediate between different multi-channel
media formats including compressed spatial audio material (e.g.
mp3-surround, DirAC [21]). We plan to explore the potential of at-
taching additional meta-information to the individual audio chan-
nels to ensure that multi-channel audio material is correctly pro-
cessed (e.g. to identify the signal components in an Ambisonics
B-format, or to distinguish a binaurally processed audio stream
from a conventional stereo track).

Related to IEM’s CUBEmixer [22], the authors are currently
developing a multi-channel authoring/mixing application which
enables the user to work and combine common spatial audio ren-
dering concepts such as VBAP, DBAP, ViMiC [23] and Ambison-
ics according to compositional aspiration and/or technical possi-
bilities [10]. The Jamoma Audio Graph layer is essential to this
development and is already being used in a prototype of this appli-
cation (Figure 6).

Figure 6: Prototype of an authoring application combining com-
mon spatial rendering concepts using Jamoma Audio Graph

6. CONCLUSIONS

The Jamoma Audio Graph framework implements a flexible and
dynamic architecture for creating networks of multi-channel unit
generators that operate in real time. The connections between ob-
jects are not only capable of delivering multiple channels of au-
dio through each individual connection, but the number of audio
channels may change dynamically during the operation of the au-
dio graph. Furthermore, the connections themselves are dynamic,
meaning that unit generators may be connected or detached during
the operation of the audio graph without requiring the signal chain
to be re-compiled, and giving rise to live coding and live patch-
ing applications. Finally, the vector size of the signal processing
graph, as well as the sample rate of the graph is dynamic with
parts of the graph that may operated at different rates for spectral,
granular, or other areas of interest.

Through implementations for a variety of text-based and
graphical environments, we have proven the flexibility of the archi-
tecture and the potential for great usability improvements to those
environments. We believe the structure to be a good fit for multi-
threaded parallel processing, which comprises much of the future
development of Jamoma Audio Graph. As an open source project
with cross-platform support, we believe that Jamoma Audio Graph
provides a relevant and applicable model for developing real time
audio processing systems.

7. ACKNOWLEDGMENTS

The authors wish to thank Alexander Refsum Jensenius and the
fourMs lab at the University of Oslo for hosting the workshop
during which the initial architecture of Jamoma Audio Graph was
designed. We additionally thank Pascal Baltazar and everyone at
GMEA Centre National de Création Musicale for hosting a spa-
tialization workshop during which the design of Jamoma Audio
Graph was reviewed and heavily revised. Initial development was
supported by The Municipality of Bergen. Øyvind Brandsegg, Jeff
Carey and IOhannes Zmölnig have provided valuable insight into
processing of multi-channel signals in Csound, SuperCollider and
Pd respectively. Jesse Allison provided assistance with the Ruby
on Rails implementation of Jamoma Audio Graph.

8. REFERENCES

[1] Timothy Place, Trond Lossius, and Nils Peters, “A flexible
and dynamic C++ framework and library for digital audio
signal processing,” in Proc. of the International Computer
Music Conference, New York, US, 2010, pp. 157–164.

DAFX-7

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

[2] Timothy Place and Trond Lossius, “Jamoma: A modular
standard for structuring patches in Max,” in Proc. of the
2006 International Computer Music Conference, New Or-
leans, US, 2006, pp. 143 – 146.

[3] Xavier Amatraian, “A domain-specific metamodel for multi-
media processing systems,” IEEE Transactions on Multime-
dia, vol. 9, no. 6, pp. 1284–1298, 2007.

[4] Ge Wang, The ChucK Audio Programming Lanuage: A
Strongly-timed and On-the-fly Envon/mentality, Ph.D. the-
sis, Princeton University, 2008.

[5] Steven Yi, “Creating encapsulated instruments in Csound5,”
Csound Journal, Winter 2006.

[6] Ross Bencina, “PortAudio and media synchronisation - it’s
all in the timing,” in In Proc. of the 2003 Australasian Com-
puter Music Association (ACMC’03), 2003, pp. 13–20.

[7] Ville Pulkki, “Virtual sound source positioning using vector
base amplitude panning,” J. Audio Eng. Soc., vol. 45(6), pp.
456–466, 1997.

[8] Trond Lossius, Pascal Baltazar, and Théo de la Hogue,
“DBAP - Distance-Based Amplitude Panning,” in Proc. of
2009 International Computer Music Conference, Montreal,
Canada, 2009, pp. 489–492.

[9] Jan C. Schacher and Philippe Kocher, “Ambisonics Spatial-
ization Tools for Max/MSP,” in Proc. of the 2006 Interna-
tional Computer Music Conference, New Orleans, US, 2006,
pp. 274–277.

[10] Nils Peters, Trond Lossius, Jan Schacher, Pascal Baltazar,
Charles Bascou, and Timothy Place, “A stratified approach
for sound spatialization,” in Proc. of 6th Sound and Music
Computing Conference, Porto, Portugal, 2009, pp. 219–224.

[11] Sam Ruby, Dave Thomas, and David Heinemeier Hansson,
Agile Web Development with Rails. 3rd edition, The Prag-
matic Programmers LLC, 2009.

[12] Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian
Ward, “Live coding in laptop performance,” Organised
Sound, vol. 8, no. 3, pp. 321–330, December 2003.

[13] Robert C. Martin, Clean code. A handbook of Agile software
craftsmanship, Prentice Hall, 2009.

[14] Andrew Hunt and David Thomas, The Pragmatic Program-
mer, Addison-Wesley, 1999.

[15] Jøran Rudi, “Norge et lydrike - norway remixed: a sound
installation,” Organised Sound, vol. 8, no. 2, pp. 151–155,
August 2003.

[16] Trond Lossius, Sound Space Body: Reflections on Artis-
tic Practice, Ph.D. thesis, Bergen National Academy of the
Arts, 2007.

[17] Norbert Schnell and Diemo Schwarz, “Gabor, multi-
representation real-time analysis/synthesis,” in Proc. of
the 8th International Conference on Digital Audio Effects
(DAFx’05), Madrid, Spain, 2005.

[18] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J.D. Kubiatowicz, E.A. Lee, N. Morgan, G. Necula, D.A.
Patterson, et al., “The parallel computing laboratory at UC
Berkeley: A research agenda based on the berkeley view,”
Tech. Rep., UC Berkley, Tech. Re. UCB/EECS-2008, 2008.

[19] Andreas Partzsch and Ulrich Reiter, “Multi core / multi
thread processing in object based real time audio rendering:
Approaches and solutions for an optimization problem,” in
122th AES Convention, Preprint 7159, 2007.

[20] Stuart Bray and George Tzanetakis, “Implicit patching for
dataflow-based audio analysis and synthesis,” in Proc. of the
2005 International Computer Music Conference, 2005.

[21] Ville Pulkki, “Spatial sound reproduction with directional
audio coding,” J. Audio Eng. Soc., vol. 55, no. 6, pp. 503–
516, June 2007.

[22] Thomas Musil, Winfried Ritsch, and Johannes M. Zmölnig,
“The CUBEmixer a performance-, mixing- and mastering
tool,” in Proc. of the 2008 Linux Audio Conference, Colgne,
Germany, 2008.

[23] Nils Peters, Tristan Matthews, Jonas Braasch, and Stephan
McAdams, “Spatial sound rendering in Max/MSP with
ViMiC,” in Proc. of the 2008 International Computer Mu-
sic Conference, Belfast, UK, 2008, pp. 755–758.

DAFX-8

	1 Introduction
	1.1 Requirements

	2 Background
	2.1 Decoupling Graph and Unit Generator
	2.2 Audio Graph Structures
	2.3 Push vs. Pull
	2.4 Multi-channel Processing
	2.4.1 CSound
	2.4.2 SuperCollider

	3 Design and Implementation
	3.1 Structure
	3.2 Building the Graph
	3.3 Processing the Graph
	3.4 Graph Description

	4 Application
	4.1 Max/MSP
	4.1.1 Jamoma Modular

	4.2 PureData (Pd)
	4.3 Ruby
	4.4 Cross-Coding

	5 Discussion and future work
	5.1 In Practice
	5.1.1 Code design
	5.1.2 Audio graph patching

	5.2 Computational performance
	5.2.1 Multithreading

	5.3 Flexible audio graph management
	5.3.1 Multiple Simultaneous Graphs
	5.3.2 Dynamic vector size
	5.3.3 Implicit Patching

	5.4 Improving support for work on spatial audio

	6 Conclusions
	7 Acknowledgments
	8 References

